

Introduction

The emerging €6.4 Trillion Offshore Wind Energy Market, enabled by The Supergrid, is the key to Europe's Energy Future

Mainstream is the largest independent Offshore Wind Energy Developer in the world

To accelerate the Supergrid, Innovative ICT solutions, new ICT policies, new ICT standards and greater cooperation across the ICT supply chain are needed

ICT Strategies for The Supergrid

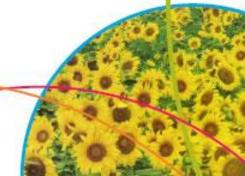
- Mainstream Renewable Power
- Offshore Wind in Europe
- Supergrid Enablers
- Offshore Wind Developers' ICT needs
- EU Data Management initiatives
- Mainstream's Current ICT Strategy
- The need for ISIS: "Integrated Sea Information System"
- Next Steps

ICT Strategies for The Supergrid

- Mainstream Renewable Power
- Offshore Wind in Europe
- Supergrid Enablers
- Offshore Wind Developers' ICT needs
- EU Data Management initiatives
- Mainstream's Current ICT Strategy
- The need for ISIS: "Integrated Sea Information System"
- Next Steps

Vision

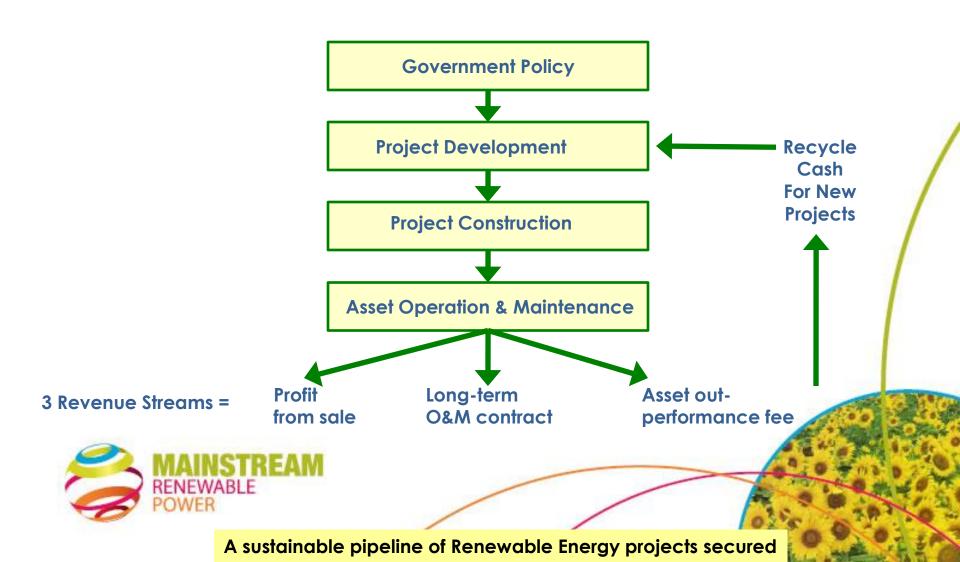
Mainstream Renewable Power was founded by Dr. Eddie O'Connor in February 2008.


"Our vision
is of thriving economies and communities
liberated from the restrictions of fossil fuels,
using
renewable energy
as their
mainstream source of power."

The world is experiencing a **once-off historical transition** to sustainable fuels: Each one of our 195 countries must go through it.

4 fundamental issues drive this transition;

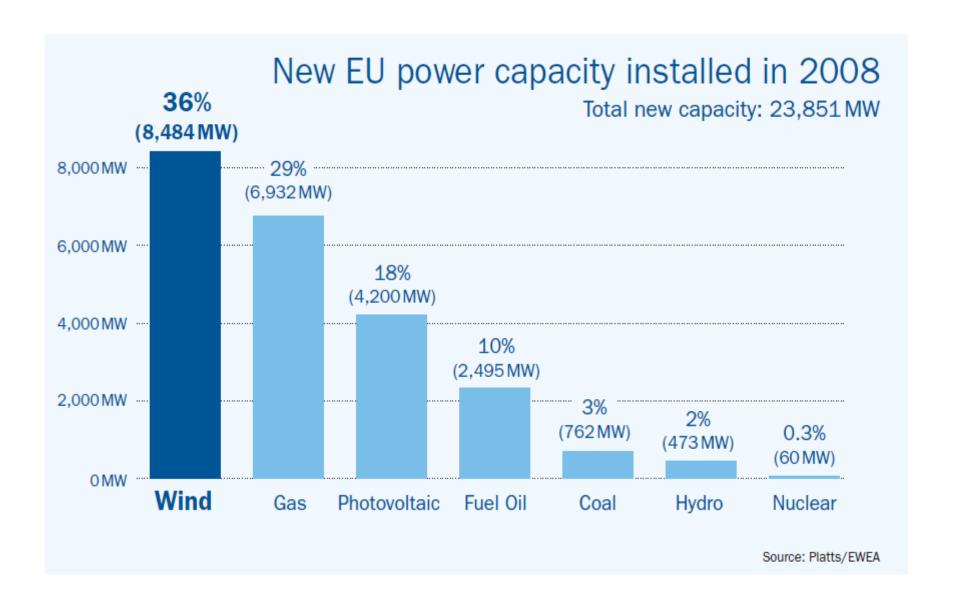
- Climate change
- •Ever-increasing Demand for Energy
- Rising Fossil Fuel Prices
- Energy Security



Mainstream's Business Model

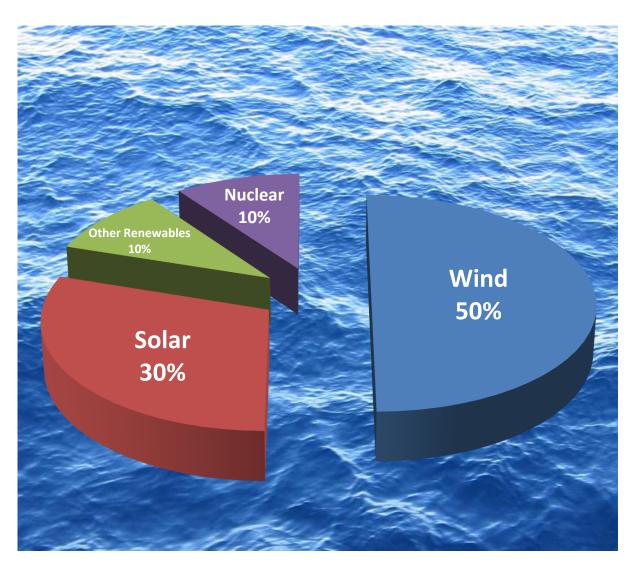
- •Sustainability as a business is what we do at Mainstream : wind & solar.
- •Mainstream's business model spans 4 key areas ;

Mainstream's 14,000+ MW Projects' Pipeline



ICT Strategies for The Supergrid

- Mainstream Renewable Power
- Offshore Wind in Europe
- Supergrid Enablers
- Offshore Wind Developers' ICT needs
- EU Data Management initiatives
- Mainstream's Current ICT Strategy
- The need for ISIS: "Integrated Sea Information System"
- Next Steps



EU Energy Perspective : Current Investment Mix

EU Energy Perspective : 2050 Mix

Energy Demand

Offshore Winds farms are needed for Europe to meet Green House Gas Targets

Interconnection across EU member states is needed to enable Offshore Wind

Interconnection, or Supergrid is vital for delivery of any 2050 scenario

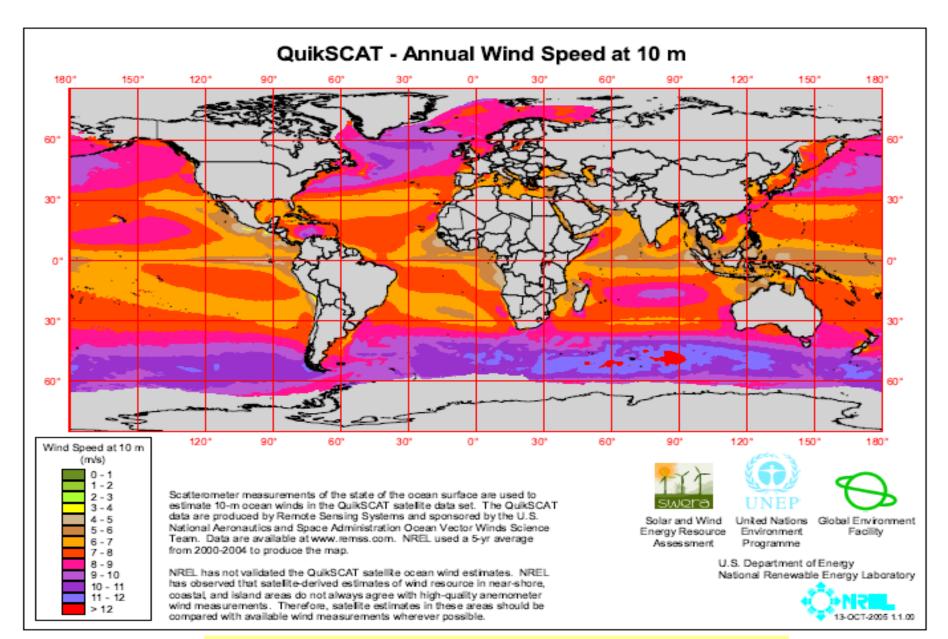
2020 offshore grid connections must be Supergrid-compliant

EU Energy Perspective : Where is the Wind Resource?

- 1,800,000 MW of installed Wind Power needed by 2050
 - Based on projected 2050 energy requirements
- 200,000 MW from Onshore Wind: the limit
 - The limit because Europe is the world's most crowded Continent
- 1,600,000 MW from Offshore Wind
 - Plenty of space to grow beyond this target
 - Achievable at €3,600,000.00 per MW installed

Equates to:

- **€5.8 Trillion** investment in Offshore Wind Turbines by 2050.
- €0.6 Trillion investment in associated Offshore transmission and distribution.


Video: 2050 Challenge

Click Here

Offshore Wind Resource

Europe's Electricity Demand

Europe's Power Demand

EU27 Demand (2008): 3,200 TWh

Offshore Wind Power Available

Area considered with 5MW/Km²

 North Sea:
 35,700,000 MW

 Mediterranean Sea:
 12,500,000 MW

 Total
 48,200,000 MW

Equates to: 161,000 TWh

Conclusion:

Demand 3,200 TWh Supply 161,000 TWh

Supply v Demand x 50

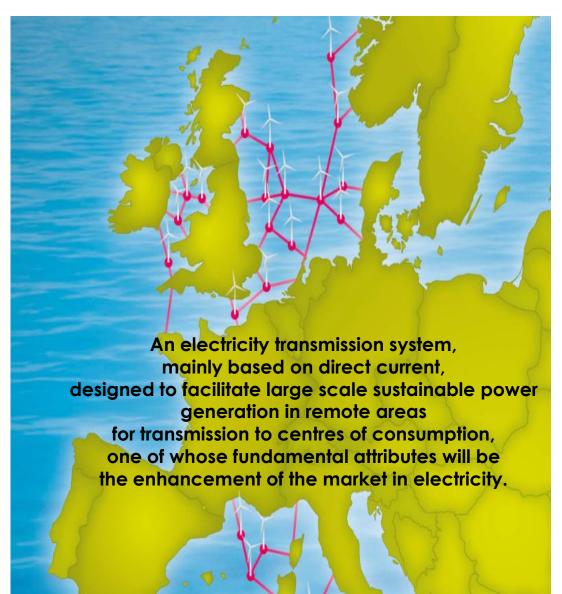
Mr Brian Hurley, Wind Site Evaluation Ltd. Offshore Wind Resources in Europe Marseilles, March 2009

Offshore Wind in the North Sea can meet Europe's need, 50 fold

Mainstream's Projects in the North Sea

Key Features

- •Excellent wind resource
- Convenient location for major energy consumers
- •10 countries are now focused & organised to developing this resource
- •Mainstream has 3 projects in the North Sea:
 - Germany
 - Scotland
 - •England
- **33,000 MW** of Offshore Wind Round 3 Development licences issued by Crown Estate in UK waters


ICT Strategies for The Supergrid

- Mainstream Renewable Power
- Offshore Wind in Europe
- Supergrid Enablers
- Offshore Wind Developers' ICT needs
- EU Data Management initiatives
- Mainstream's Current ICT Strategy
- The need for ISIS: "Integrated Sea Information System"
- Next Steps

Supergrid

Key Features

- •A new transmission backbone for Europe's decarbonised power sector
- •Enables distribution of energy from 1,600,000 MW Offshore Wind Farms
- •A transformational approach to electricity generation and distribution
- •Captures clean energy generation and delivers firm renewable power across Europe
- Goes beyond existing point-to-point interconnectors
- Innovative technology needed to deliver HVDC Supernode technology
- •Requires a strategic partnership across the Supply Chain
- Cost to build Europe's Supergrid;
- **€0.6 Trillion** Offshore Supergrid **€0.6 Trillion** Onshore Supergrid

Supergrid Consortium

The consortium represents companies and organisations with a mutual interest in promoting the policy agenda for a European Supergrid.

CEO Ana Aguado runs the Consortium which exists to accelerate the Supergrid via a 5 point strategy:

- 1. Develop Standards
- 2. Create Offshore Transmission Operator
- 3. Establish EU Regulations
- 4. Create Single Electricity Market
- 5. Establish legal basis for trading

Visser & Smit Marine Contracting

Video: 2050 Supergrid

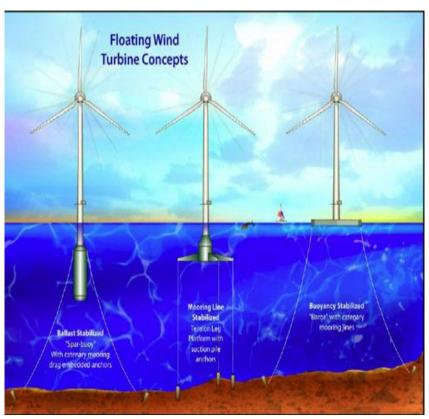
Click Here

Europe's Supergrid in 2050

7 Innovation Trajectories are needed;

- 1. Bigger Wind Turbines
- 2. HVDC Transmission Cables
- 3. Supernode
- 4. Next-Generation Civil Engineering
- 5. Bigger Construction Vessels
- 6. Bigger Ports
- Better ICT

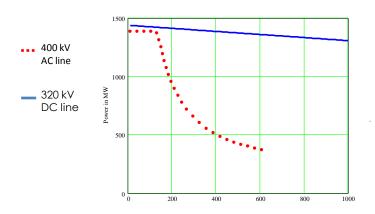
Dr Eddie O'Connor, Mainstream Renewable Power Supergrid Launch London, March 2010


Innovation # 1 : **Bigger Wind Turbines**

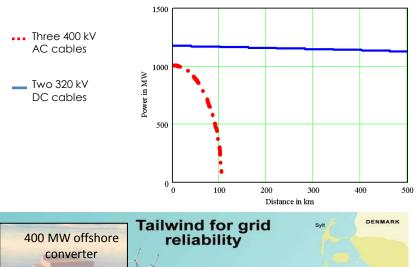
Turbines will get bigger: 20 MW

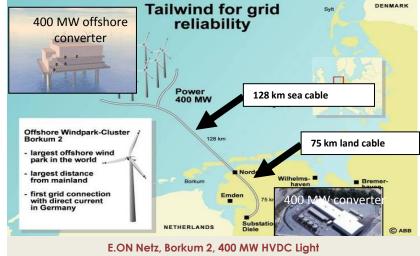
MAGENN (M.A.R.S) Past & Present Future Wind Wind Turbines Turbines? UPWIND 10 and 20 MW Clipper 7.5MW MBE 2015 Source: Garrad Hassan

Floating Turbines will be viable

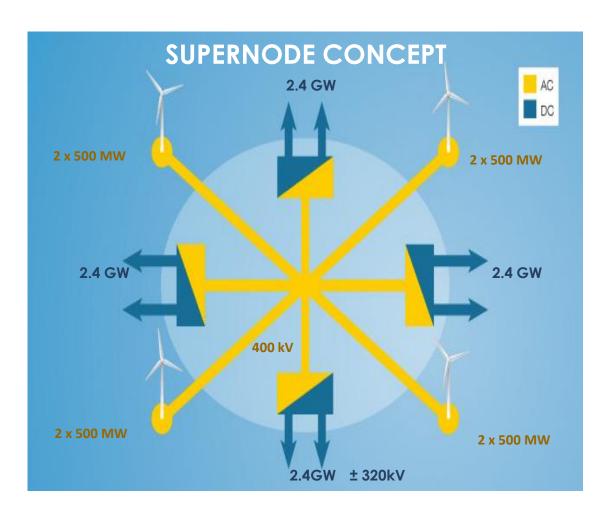

Dr Eddie O'Connor, Mainstream Renewable Power C & F Offshore Summit London, April 2009

Innovation # 2: HVDC Transmission Cables




Overhead Cables

Sea Cables



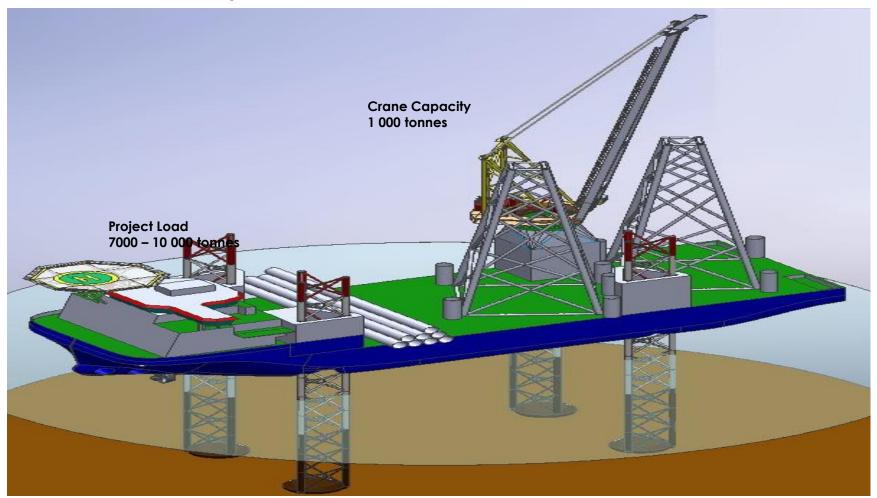
Mr Gunnar Asplund, ABB HVDC Supergrid - Technology and Costs Marseilles, March 2009

Innovation # 3 : **Supernode**

"In 2011, only 30% of all power generated uses power electronics somewhere between the point of generation and end use.

By 2030, 80% of all electric power will flow through power electronics."

Office of Electric Delivery & Energy Reliability,
US Dept of Energy


Mr Joe Corbett, Mainstream Renewable Power Detailed design of the Supernode Marseilles, March 2009

Innovation # 4: Next Generation Civil Engineering

Offshore wind Jack-up

Mr Fenno Leeuwerke, Hochtief Construction Building at Sea and 3rd Generation of Ships Marseilles, March 2009

Innovation # 5 : **Bigger Construction Vessels**

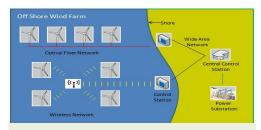
Mr Fenno Leeuwerke, Hochtief Construction Building at Sea and 3rd Generation of Ships Marseilles, March 2009

Innovation # 6 : **Bigger Ports & Better Logistics**

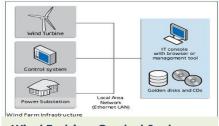
Requirements for UK's Offshore Plans;

- Develop two completely new ports
- One on either coast of the UK
- More than transport nodes
- Focal point for regional development
- Centres of excellence for R + D
- Training centres for technologists/technicians
- New manufacturing centres

Dr Eddie O'Connor, Mainstream Renewable Power C & F Offshore Summit London, April 2009

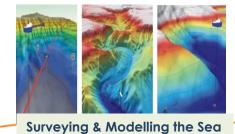


Innovation #7: Better Information Technology



Power Distribution Management

Hi-Speed Wireless Communication


Wind Turbine Control Systems

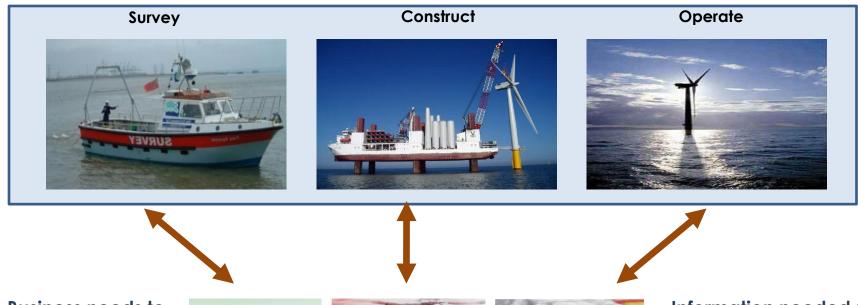
Supernode Power Controls

Monitoring & Controlling Risk

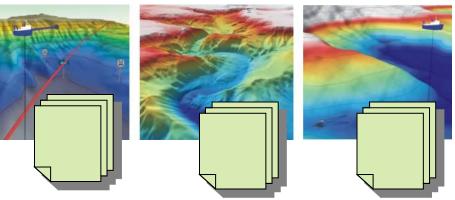
John Shaw, Mainstream Renewable Power **ICT Strategy for Offshore Wind**

Video: 2050 Forward

Click Here


ICT Strategies for The Supergrid

- Mainstream Renewable Power
- Offshore Wind in Europe
- Supergrid Enablers
- Offshore Wind Developers' ICT needs
- EU Data Management initiatives
- Mainstream's Current ICT Strategy
- The need for ISIS: "Integrated Sea Information System"
- Next Steps


Offshore Business Process

5 % of the € 6.4 Trillion investment will be for ICT Equates to € 320 Billion ICT investment

Business needs to...

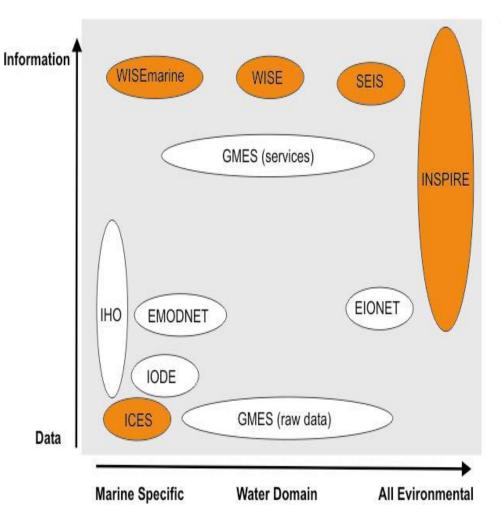
Identify & Mitigate Risks Accelerate Surveying Accelerate Construction Connect & Distribute Power

Information needed:

Surveying Modelling Turbine Control Systems Wireless Communication Power Distribution Management Project & Document Management Risk Management

What Offshore Wind Developers Need from ICT

- Mainstream's fundamental belief is that marine data is a Public Good.
 - It should be collected once and used many times.
- Key needs;
 - Accessibility and Management:
 - Clear policy of ownership, licensing & access for all publicly funded data collection
 - Single point of access to marine data and information
 - Discourage cost-recovery pricing from public bodies
 - Data Standards and Quality control:
 - Common standards across jurisdictions and disciplines
 - Ensure the above is addressed in publicly funded data collection contracts
 - International Coordination:
 - Harmonised approach across the EU in relation to all of the above:
 - Links provided and maintained to EU/global databases and initiatives
- Benefits of improved data management;
 - Measurable reductions in costs to find, access and retrieve data
 - Wider and more reliable data and information upon which to base assessments
 - Mechanisms to share results and data with stakeholders


ICT Strategies for The Supergrid

- Mainstream Renewable Power
- Offshore Wind in Europe
- Supergrid Enablers
- Offshore Wind Developers' ICT needs
- EU Data Management initiatives
- Mainstream's Current ICT Strategy
- The need for ISIS: "Integrated Sea Information System"
- Next Steps

EU & Marine Data Management

- 4 EU Directives in particular impact industry:
 - Marine Strategy Framework Directive –

 'establish and implement coordinated monitoring programmes for ongoing assessment of the environmental status of [member state] marine waters'
 - INSPIRE Directive 'adopt measures for the sharing of data sets and services between public authorities for the purpose of public tasks and the Environmental Information Directive'
 - Birds and Habitats Directive 'establish a network known as Natura 2000 (SPA, SACs)
 - Data Collection Framework for Fisheries –
 'collect, manage and provide high quality
 fisheries data for the purpose of scientific
 advice, mainly for appropriate fisheries
 management decisions'

Shading = initiatives to manage data to satisfy EC Legislation

Marine Knowledge 2020

Marine Knowledge 2020:

Marine Data and Observation for Smart and Sustainable Growth

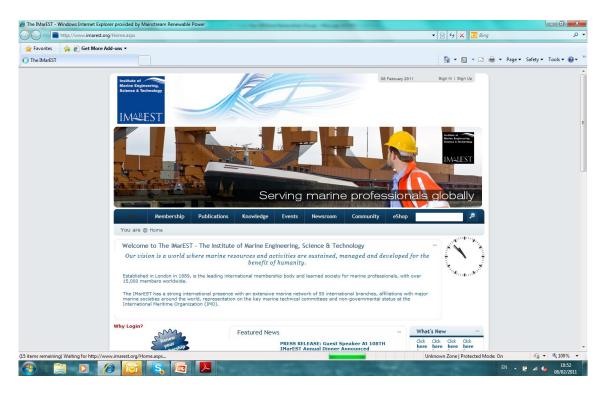
Launched 13 September 2010

Led by Iain Shephard

Key Objectives

This Initiative from the Commission will ensure the following are achieved;

- Data from the EU-supported research programmes are more available for re-use
- Common standards and policies
- Contribute towards an interoperable global marine knowledge system


Cost

- €110.0 Million spent per year by EU on marine data collection
- € 18.5 Million additional allocation per year for EU's Marine Knowledge 2020 initiative

IMarEST Offshore Renewables Special Interest Group

The Institute of Marine Engineering, Science and Technology (IMarEST) is the leading international membership body and learned society for marine professionals, with over 15,000 members worldwide.

Special Interest Group established for Offshore Renewables. December 2010

Led by John Sturman, Chairman, IMarEST Offshore Renewables SIG

Aim is to be the global professional organization that represents the offshore renewables industry.

Important activities will include knowledge sharing amongst members, policy formulation and standard setting.

An ICT Working Party is in place.

MEDIN

The UK Marine Environmental Data and Information Network (MEDIN) is a collaborative partnership driving improved management and access of marine data.

Key Achievements

01 September 2010

- Wide public and private sector involvement; 30 organisations, including Mainstream
- Created a set of common standards: Tender Specification Clause
- Established 4 Data Archive Centres (DAC) Network: priority public marine data sets
- Launched web portal; central search capability http://www.oceannet.org/

Key Gaps

- No obligation for Industry-collected data
- Granularity for project-specific data storage
- No 3D Visualisation, No Simulation

ICT Strategies for The Supergrid

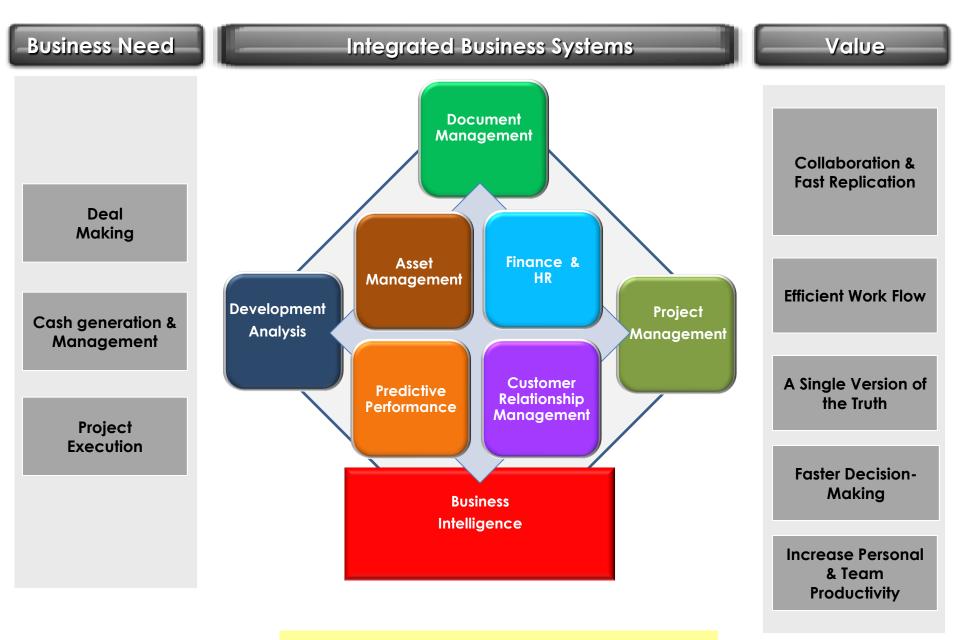
- Mainstream Renewable Power
- Offshore Wind in Europe
- Supergrid Enablers
- Offshore Wind Developers' ICT needs
- EU Data Management initiatives
- Mainstream's Current ICT Strategy
- The need for ISIS: "Integrated Sea Information System"
- Next Steps

Step 1: **Business Process**

	Generation	Energy Supply	Delivery	Customer Service	Shared Services	
		(Wholesale/Trading)	(Trans / Distribution)	(Retail)	(Corp/Enterprise)	
	Generation asset management		Delivery (T&D) Asset Lifecycle Management	Customer Lifecycle Management	Supply Chain Management	
Business	Operation Management		Network Operation Management	Revenue Cycle Management*	IT portfolio and asset management	
Processes	Fuel Management		Work Management		Finance / Administration	
		Energy Commodity Management			Human Resources Management Legal / Regulatory affair Management Enterprise Risk Management Strategy Planning	
Business	Document Management	SCADA	Development Analysis	Customer Relationship Management	Finance & HR	
Systems	Asset Management	Load Forecasting		Complex Billing	Project Management	
	Predictive Performance	Demand Response	Field Force Enablement (mobility)		Business Intelligence	
	ruermanagemeni	Clearing & Settlement	Field Force Enablement			
	Emissions	Meter Data Management	Outage Management		Enterprise Risk	
	Optimisation		Network Design		Supply Chain	

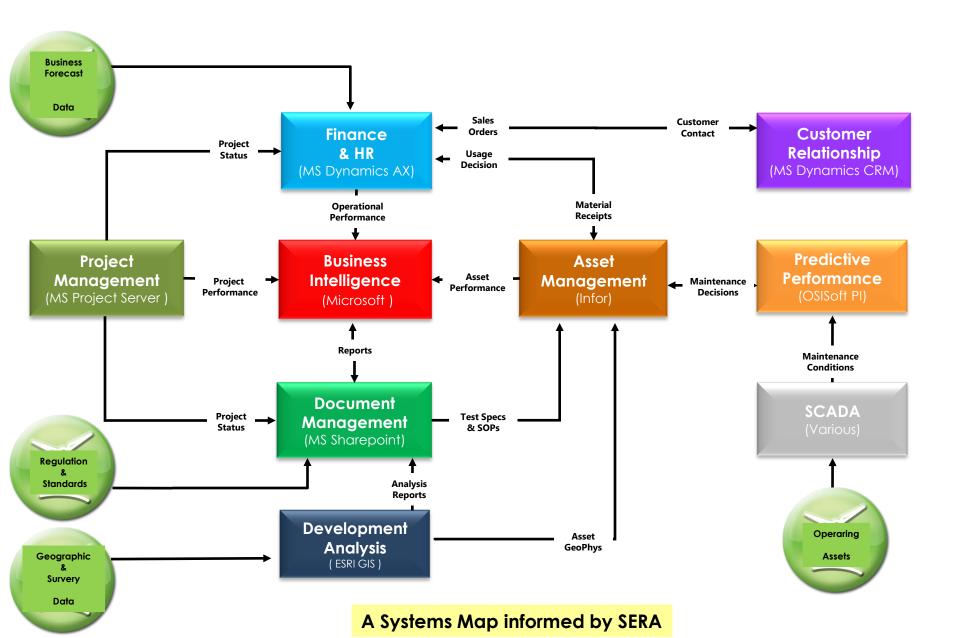
Source: Microsoft Utilities Strategy

Step 2 : **Business Priorities**



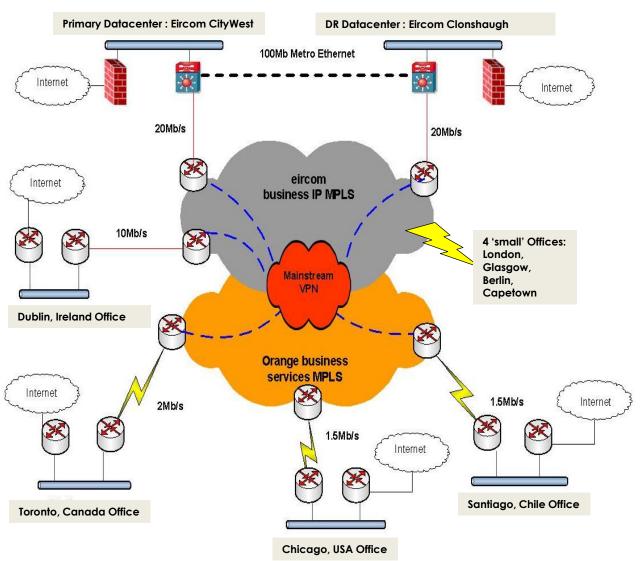
Mainstream Business Priorities vs Business Systems	Document Management System	Finance & HR System	Development Analysis System	Project Management System	Asset Management System	Predictive Performance System	Customer Relationship Management System
Develop & construct Robust Pipeline.							
2. Monitor other 'fuel-free' technologies.							
3. Partner with Local Developers.							
4. Leverage Central Expertise.							
5. Offshore position as Early-Stage Partner.							
6. Sell projects to Utilities & Investors.							
7. Recycle cash from Sale of Assets.							
8. Seek liquidity event / IPO for investors.							
Underlying Standard IT technology;							
Management Information always available.	Business Intelligence & Reporting System						
Service Excellence.	Standard PC / Print / Wireless Access / Telephony / Video Conferencing						

Step 3 : **Business Systems Vision**



8 Integrated Business Systems to deliver Value

Step 4 : **Business Systems Map**



Step 5 : **ICT Infrastructure**

S Information Services

SCHEMATIC

PARTNERS

- Microsoft : Software
- Eircom-Orange : Communications
- HP -DSS : Hardware

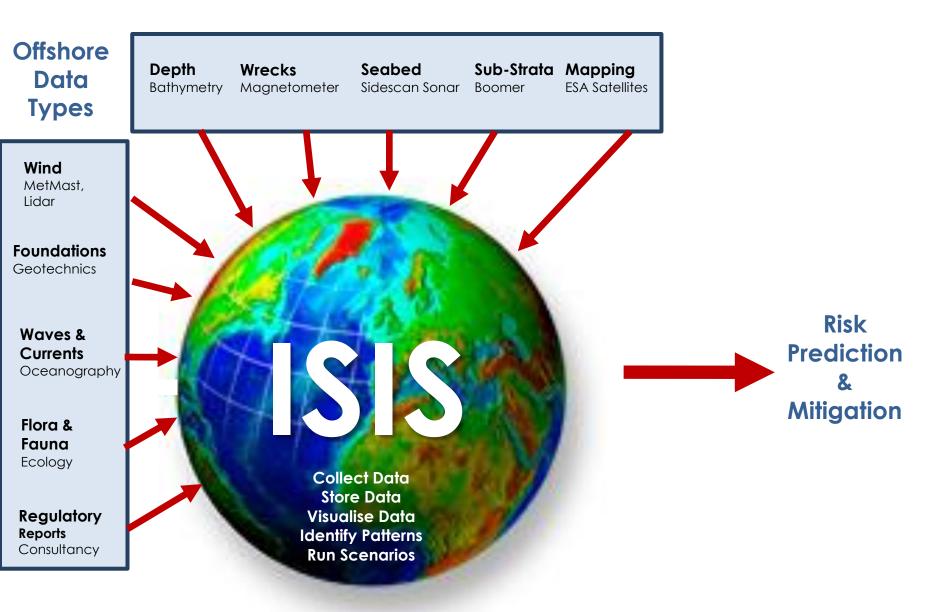
STANDARDS

- Microsoft: 29 Products
- HP : Client & Infrastructure h/w
- Cisco: data
- Nortel : Voice
- Polycom: Video

PRINCIPLES

- Aligned with SERA
- Build for global growth
- Build for 24 x 7 availability
- Build for Security
- Standardise components
- Configuration not customisation
- Partner with Strategic ICT vendors
- Service Level Agreements

A Private Cloud built for High Availability, Security, Performance

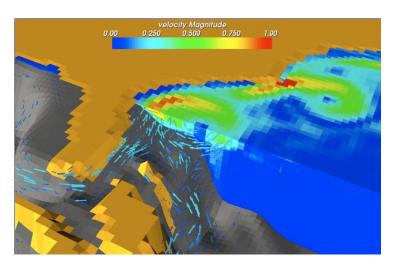


ICT Strategies for The Supergrid

- Mainstream Renewable Power
- Offshore Wind in Europe
- Supergrid Enablers
- Offshore Wind Developers' ICT needs
- EU Data Management initiatives
- Mainstream's Current ICT Strategy
- The need for ISIS: "Integrated Sea Information System"
- Next Steps

Convert Data into Wisdom

An Integrated Sea Information System (ISIS) is needed: doesn't currently exist



Precedent: 3D Data Visualisation

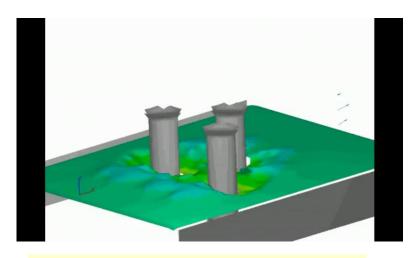
Pittsburgh Supercomputing Center (PSC) computational scientist consultants work closely with discipline scientists to provide tools for visualization and analysis on their Cray XT3.

"too much information.": When it comes to a scientist's desire to simulate physical phenomena in realistic detail, there is no such thing.

3D visualisation of Atlantic Currents University of Miami & PSC

Realtime Ocean Visualisation Lenfest Ocean Future Blender 2.48

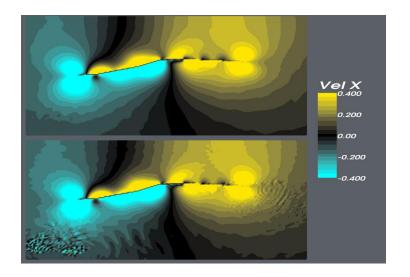
http://www.youtube.com/watch?v=Z5Q1Pwrp8bw&feature=youtube_gdata_player


Precedent: Running What If Scenarios

Visualising data makes it easier to identify risk.

Simulating scenarios makes it easier to predict future risk.

Sediment Scour Simulation


Northwest Hydraulics Consultants. CUDA

http://www.youtube.com/watch?v=NIGzrlsIhQg &feature=youtube_gdata_player

3D visualisation of Soil Displacement

Carnegie Mellon University & PSC

ICT Strategies for The Supergrid

- Mainstream Renewable Power
- Offshore Wind in Europe
- Supergrid Enablers
- Offshore Wind Developers' ICT needs
- EU Data Management initiatives
- Mainstream's Current ICT Strategy
- The need for ISIS: "Integrated Sea Information System"
- Next Steps

Step 1. Form ISIS Consortium; prospective members

Step 2. Agree The ISIS Problem Statement

Business Problem:

As Europe expands Offshore Wind Energy, Developers need to collect and analyse large quantities of data and meet regulatory requirements. In the absence of an Integrated Sea Information System, a variety of methods will be used to collect, store, analyse and compile data leading to delays and inefficiencies.

	Current State	Integrated Sea Information System (ISIS)			
Work Flow	Inefficient, disparate methods across the Offshore Industry, No agreed workflow methodologies exist across multiple stakeholders.	Integrated Approach			
Single version of the truth	No single data repository exists, No single data analysis methodology exists. Difficult to move between 3 rd party providers of data	Integrated approach to data management. all collected data stored in a single n-dimensional database, standardised visualisation method			
Speed of decision-making	Risks not captured in unitary manner	Integrated approach to risk management: rule-based decision-making to predict and mitigate risk, to identify trends and patterns, to run what-of scenarios, to peer into the future			
Fast Learning	Difficult to move between 3 rd Party providers of data	Integrated approach to Knowledge Management. standard Reports for Regulatory Compliance			
Security	Loose Security: Position unknown, difficult to enforce.	Complies with ISO27001. Tight Security: Position known, protected.			
Cost	High repeating cost for individual organisations. High Total Cost of Ownership.	Low Total Cost of Ownership . Initial high cost to develop, lower cost to operate, all stakeholders share the cost.			
Personal & Team Productivity	Inefficient	Satisfy all Stakeholders with one system. Clear, Single Repository for all Data. Measure Once, Use Manage times, Open Systems Standards			

ISIS: faster, better, more reliable, more secure

Step 3. Identity & Address ICT Barriers

Innovation is inhibited by data licence issues:

- Data licence issue throughout European waters
- Over 400 legal entities have licensed ownership of data in Britain
- Need EU Data Ownership Policy

Innovation is inhibited by regional data strategy variation:

- National data archives are at different levels of maturity
- Low Interoperability of data and metadata across EU
- Need EU standard for data archives

Role for EU Commission:

- Build on existing progress made by data communities
- **Provide sustainable funding** for Innovation
- Provide framework for licensing and re-use of data

Role for ISA:

- Build on existing ISA standards in other Sectors (eg Manufacturing)
- Align with relevant IEEE standards for computer & electrical devices
- Provide framework for developing integrated standards across supply chain

Conclusion

The Energy Sector is undergoing A Technology
Transformation as it moves to Renewable Sources

Mainstream is a Growing, Global Renewable Energy Start-Up with a strong Projects pipeline

Better ICT, underpinned by Innovation, Standards and Collaboration, will accelerate Offshore Wind Energy Development

Further information

Mainstream: Business Model

http://www.mainstreamrp.com/

Mainstream's ICT Strategy, described by Silicon Republic

http://www.siliconrepublic.com/strategy/item/14728-in-the-mainstream

Intel & Mainstream: joint White-Paper & Video on Offshore Wind Farms

http://www.intel.com/embedded/energy/products.htm (see 'Wind Turbine Availability Excellence')

http://edc.intel.com/Link.aspx?id=4264

http://www.youtube.com/watch?v=oOIWSWujw8s

Microsoft & Mainstream: Blog on SERA adoption & link to SERA document

http://blogs.msdn.com/b/mspowerutilities/archive/2010/06/24/serg-succinctly.aspx

http://www.microsoft.com/industry/manufacturing/utilities/default.mspx (see 'Spotlight' Section for details on SERA).

DSS & Mainstream: Partnership in action

http://www.decision.ie/

Friends of the Supergrid: driving policy and standards

http://www.friendsofthesupergrid.eu/

EU Commission Marine Observation and Data Network Expert Group

https://webgate.ec.europa.eu/maritimeforum/node/1709

https://webgate.ec.europa.eu/maritimeforum/system/files/ISIS_Update_10March2011.pdf

Energy Trends: Oil refinery bottleneck report from Richard Branon & from US Military

http://peakoiltaskforce.net/wp-content/uploads/2010/02/final-report-uk-itpoes_report_the-oil-crunch_feb20101.pdf http://smallwarsjournal.com/blog/2010/03/joint-operating-environment-20-1/

Innovation Value Institute

http://www.ivi.ie/

Eur Ing **John Shaw** BE MBA C.Eng SMIEE MISA **CIO**

Mainstream Renewable Power

+ 353 87 283 6499

John.shaw@mainstreamrp.com