

Alarm Management Reflections

Standards

Certification

Education & Training

Publishing

Conferences & Exhibits

Nicholas P Sands, CAP, PE Manufacturing Technology Fellow, DuPont

About the Presenter

Nicholas Sands, CAP, PE

- ISA Fellow
- Control engineer at DuPont
- 25 years of experience in chemical plants
- Co-chair of ISA18 standard committee
- Secretary of IEC 62682 standard committee
- Recreational musher

Outline

- Safety Moment
- Challenges of Alarm Management
- Goals of Alarm Management
- The Lifecycle
- The Program
- Reflections

Safety Moment – Overflow Incidents

In many overflow incidents, alarms were designed to protect against the consequence, but:

- Instrument may not measure
- Alarm may not activate
- Operator may not see alarm
- Operator may not believe alarm requires action
- Operator may not take action in response to the alarm

Common Challenges of Alarm Management

- Alarm management is recognized as a common issue in the process industries
- Alarm-related issues have an estimated cost of more than \$20 billion per year to U.S. industry
- Poorly performing alarm systems are often a contributing factor in industrial incidents
- Common issues include:
 - Stale alarms
 - Chattering alarms
 - Alarms that do not require a response
 - Other nuisance alarms

Goals of Alarm Management

- Alarms should give the operator an indication of the right time to take the right action to avoid undesired consequences
- Operators should be trained on the right actions
- Alarm system should be monitored to keep performance within limits and not overwhelm the operator
- Nuisance alarms should be identified and corrected to keep the alarm system working

Definition of Alarm

- ...An audible and/or visible means of indicating to the operator
- ...An equipment malfunction, process deviation, or abnormal condition requiring a <u>timely</u> response
- from IEC 62682 and ANSI/ISA-18.2-2015
- modified from ANSI/ISA-18.2-2009

Alarm Management Lifecycle

- ANSI/ISA-18.2 lifecycle model represents the overall process of alarm system management for both new and existing systems
- The same lifecycle is in the IEC62682 standard

DuPont Alarm Management Plan

- 1. Leadership
- 2. Monitoring
- 3. Benchmark
- 4. Quick Hits
- 5. Training
- 6. Philosophy
- 7. Rationalize
- 8. Improvement
- 9. Audit

Results

- The 2012 program was completed in December
- Over 250 control systems worldwide are now monitored
- This is a culture change for alarms and alarm systems
- There has been a dramatic reduction in nuisance alarms
- There is progress in overall alarm system performance

Next Steps

- Dynamic Suppression
 - Beyond designed suppression
- Providing Guidance
 - Visualization of rationalization information at the operator console
 - Without this, difficult to get a return on investment in rationalization

Reflections

- Monitoring
 - Surprising (to some) data on the average alarm rate
 - Key to continuous improvement
- Benchmark (initial audit)
 - Surprising (to some) number of alarms configured
- Rationalization
 - Excellent knowledge capture from experienced personnel
 - Excellent training information
 - Discovery process for how things actually work
 - Different thinking needed vs PHA

Reflections

- Alarm systems should be recognized as a key indicator of operational excellence
- Well planned and executed alarm management improves:
 - Safety
 - Reliability
 - Quality
 - Efficiency
- Structured, sustainable, standards-based lifecycle approach to alarm management should provide significant operational and cost benefits

Reflections

- A top-down approach is needed
- Suppression methods are key to continuous improvement
- Integrity verification and rationalization information availability are key functionalities

More Information

- ISA-TR18.2.6-2012 Alarm Systems for Batch and Discrete Processes
 - Covers the application of ISA-18.2 lifecycle to batch processes
 - Generally the same with more focus on:
 - Rationalization for different operations and phases
 - Design of alarms with more common designed suppression

Standards on Alarm Management

- EEMUA 191 Alarm Systems A Guide to Design, Management and Procurement
 - Guideline, not a standard, updated in 2013
- ANSI/ISA 18.2 Management of Alarm Systems in the Process Industries
 - Updated in 2015
- IEC 62682 Management of Alarm Systems in the Process Industries
 - Based on ANSI/ISA 18.2
 - Published Oct 2014

Engineering Equipment and Material Users' Association

International Society of Automation

International Electrotechnical Commission

Questions?

Thank you for attending FPID 2016!